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TECHNICAL REPORT R-24

AN IMPROVED FIRST-APPROXIMATION THEORY FOR THIN SHELLS

By J. LyErL SANDERS, JR.

SUMMARY

An improved form of Love's first-approrimation
theory for thin shells is derived. In contrast to the
results of Love’s theory, all strains in the proposed
theory vanish for rigid-body motions. [xpressions
for the stress resultants and couples which satisfy
the homogeneous equilibrium equations are given
in terms of three stress functions. The special forms
of the equations of the new theory in the ecase of a
circular cylinder are given in an appendir.

INTRODUCTION

Linecar theories of thin shells may be divided
roughly into two classes, namely, lLove’s first
approximation and slight modifications of it (refs.
1 and 2), and those theories which stem from
Love’s second approximation (ref. 1). Most of the
papers in the literature which have dealt with
the genera) linear theory of thin shells have been
concerned with improvements upon Love’s second
approximation. An excellent recent survey of the
subject is given in reference 3. The present
paper is concerned with improving Love's first
approximation.

A first-approximation theory for thin shells is
distinguished from a second-approximation theory
in that in the former theory the effects of trans-
verse shear and normal strain are neglected. The
latest forms of Love's first-approximation theory
(as sct forth in refs. 2 and 4) still contain an in-
consistency which the present paper removes.
The inconsistency in the equations of the theory
is that, except for the special case of axisymmetric
loading of shells of revolution, the strains do not
all vanish for small rigid-body rotations of the
shell.

In the present analysis a modified first-approxi-
mation theory is proposed which removes the
inconsistency without complicating the system
of equations in any essential way. For simplicity
and convenience the theory has been developed
almost entirely as a two-dimensional one with
use of the principle of virtual work as the main
tool in the derivations. The derivation does not
follow the method of descent from the three-
dimensional equations of elasticity nor is it based
on a variational principle.

Results are given in the form based on the use
of the lines of curvature as coordinate curves in
the middle surface.  As a step in the development
of an integration theory, a set of three strain
compatibility equations is given which lead to
expressions for the stress resultants and stress
couples in terms of three stress functions. Par-
ticular results for a cireular eylinder are included.

SYMBOLS
h shell thickness
n coordinate normal to middle surface
n unit normal vector to middle surface
T radius vector to middle surface
51, fz unit tangent vectors to middle surface
D bending stiffness of shell, -———hhd .

12(1—v)

I Young’s modulus
My, My, M, M, stress couples
M., M stress couples for a circular eylinder
M, modified stress couple
M. modified stress couple for a circular

eylinder
N, Na, Nig, Ny stress resultants
N, N stressresultants for a circular eylinder
1
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N modified stress resultant
Ny modified stress resultant for a circular
cvlinder

Qy, Qs transverse stress resultants

Q2 Qo transverse stress resultants for a
circular evlinder

R, R, principal radii of curvature

U, U, displacements tangential to middle
surface

W displacement. normal to middle sur-
face

oy, ay cocflicients in metric form of middle
surface

Yi. Y2 transverse shear strains

strains in middle surface

strains in middle surface for a cir-
cular cylinder

Ki1y K22, Kig, k21 Dending and twisting strains

€11, €02, €12, €

22,

€r, €9, €0

Ky, Kp bending strains for a circular cvl-
inder

K12 modified twisting strain

Kzt modified twisting strain for a cir-
cular cylinder

v Poisson’s ratio

L & coordinates on middle surface

oLy P2, Pa coeflicients defined in equation (A1)

&1, b2, On rotations

Xy, Xa, ¢ stress functions

Q constant rotation vector

a constant displacement vector

DERIVATION OF SHELL EQUATIONS
GEOMETRY

Let the lines of curvature on the middle surface
of the shell be used as an orthogonal coordinate
net and let & and & denote the coordinates (as
in ref. 2).  Let the first fundamental form of the
middle surface be given by

ds?= o *dE 2+ a’d g

where dy is the line element.
radii of curvature be R, and R,.

Let the prineipal

EQUILIBRIUM EQUATIONS
The 10 stress resultants and couples (or “gen-
cralized stresses’) which act on sections of the
shell parallel to the coordinate curves are shown
in figures 1(a) and 1(b). The following six equa-
tions of static equilibrium are well-known and

n

1
|
|
|

! N .' W,
/ N, 12 21 Ny

{(a) Stress couples and rotations.
{b) Stress resultants and displacements.

Figura 1.—Orientation of coordinates, displacements,
rotations, stress resultants, and stress couples.

generally accepted (ref. 2):

Oa, Ny O Ny, Oa; - Oay , ,onay .
651 + 052 +a£2 +V¥12 651 J\’;?'.? —1—{: (J[—‘O
(1)
?3&‘714 0o, Ny, Q“_‘g r aals a,a, _
asl + bga +5£1 A2l—az AV11+“]{72" QZ—O
(2)
)L"LQI aale__ 5\711 Ny' _ o
on Top e (B0 @)
20, My, Qi My, dar 1 day

& of, T op, Mln oy Mummani=0

(4)
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aag:‘!Jz aal;‘\[u 90:_2 aal N
o T op Fop Ma= ! My—ai@@=0
(5)

Vo MM ;
‘\12_‘\21+ ]l)1 [l)g ==() (b)

Distributed load terms have been omitted for
the sake of simplicity. The generalized stresses
appearing in these equations may be defined in
terms of integrations of three-dimensional stresses
through the thickness of the shell as in reference 2

For simplicity in th(- pw%ont dev olopmvnt }10\\—

the present case this principle is

aal ‘?\“‘Yul Dal - aa;

aau\n Ged¥ar 4 O ar A A o0 Ay Ny, N.. D, + -
ff{ or o top VeTop Vetp, Q)M ‘+\ of T op Top T

>j|5” + Daz\[,,

o8, M, al%Qz) 5¢2+a1a)(\,,

QCY )7(})7| aa[ (27 _ \Y”
+ dE, + L, oy
Oay, M, Q@lj‘!z2 a‘?z ) aal
(75 o Hog, M

This integral vanishes by virtue of equations (1) to (6).

ever, they are introduced as basie elements of a
two-dimensional theory but are otherwise left
undefined.  Likewise three displacements 17, U7,
and W and three rotations ¢, ¢,, and ¢, (shown
on figs. 1(a) and 1(b)) are introduced as basic
quantities of a two-dimensional theory but are
otherwise left undefined,

STRAIN-DISPLACEMENT RELATIONS

A set of 10 generalized strain quantities (one
corresponding to each generalized stress) may be
derived in terms of the displacements and rotations
by means of a principle of virtual work. In

aau‘ T]) Oa, ‘\TH aaz

Oy N e

af ll+ lf Q‘.’)ale

aal&‘[}]

" +Da1 ‘[ _pal \[2) ala2(21>6¢1
£,

Of; Of,

M, M, 7
21+ [?l 21) 61’11}(]&([& /)

Integrating by parts yields

§ [((NL8 N bl 4- Q08 M 8¢+ M 0dds) adty— (N8l + Nuodl 7+ QoW+ My 8¢, + M ,u8¢,) aydEy|

a( 1 a > -
—”{\”a(a2 o o u>+ Niss (e

. f oy Oay,, . ol/,
+ Nyyé (\al "a?;_a% L“2+a1‘12¢n>+1\”225 o bfj
© oW )
+Q25 (xal ’ag“‘a}? - 2+a1a2¢2>+J[116 (&3 O?,
: ad) Oa,
+ M6 OE- T

where the double integral extends over a region of
the middle surface of the shell enclosed by the
curve C. Of the two integrals in equation (8)
(which equal each other), the first represents the
virtual work of the forces acting on the boundary
C, and the sccond must therefore represent the
virtual change in strain energy of the portion of the
shell within C. These considerations lead to the

A%y day ,,
D& “‘ij ("‘1‘—‘11‘1@")

Oat; oW
b? a,al ”)‘}"Qla (az Ot a}?zl 1+0‘|az¢|>

Oy ba, o0y )

¢2>+ l‘[IZ‘Ys a3 5&1 agz ¢1 ]‘v d’ll

o]
bt 0, )40 (a 92 3% 6,) bdede=0 (8)

0¢;

following definitions for the 10 strain quantities:

Lol 1 bal W

e“:‘; "afl 011“2 bf 2+Rl (9)

622_;2 ot aa, af] ]+H (10)
Lol 1 Qay,.

T O a8, ! @ (11)

¥ P
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ea :,aa(f; a;ﬂg‘zl’ﬁm (12)
ot a0 (13)
At

e L

"2‘:;1; g‘%—a}% S‘Z ¢z+%’; (16)
" 52? %l+¢1 (17)
”:&1; ?gt 1;2+¢2 (18)

Each of these 10 strain quantities vanishes for
small rigid-body motions as will be shown in ap-
pendix A.

SIMPLIFICATION OF RESULTS

The quantities v, and +, are transverse-shear
strains corresponding to the transverse-shear stress
resultants @, and ¢, In the theory derived
herein, these two strains are neglected. Setting
v1=7v.=0 gives the following expressions for the
rotations ¢, and ¢, in terms of L}, U/, and W:

U, 1 oW
U, 10oW
¢2 11)2 a; aE.’ (20)

The rotation about the normal ¢, may be calcu-
lated in terms of U/, and U, by several methods
(for example, by taking the surface curl of a
displacement vector, see ref. 5); in any case, the
result is

d),.: 1 ba;,[]?_ba.lf'l

2 bfl sz

(21)

From a comparison of equations (11), (12), and

(21) it follows that
(22)

€12 €

The definitions (egs. (19), (20), and (21)) for ¢,
¢;, and ¢, taken together with the Codazzi

relations (see ref. 1, p. 517, eqs. (10))

b ay _] aag
o6\, R, 0%
(23)
0 [a, 1 Oa,
TRV VA T

and the definitions (egs. (15) and (16)) for x
and xy vield the following identity:

Kig—K '=~ E—]{>(€12+6“) (H R)‘xz (24)

The area integral in equation (8) may be
written

ff(N115€11+N125€12+ A7215€21+N225622+M115Ku

+M125K12+M215K21+M225K22)0102d51df2 (25)

By using equations (22) and (24) this integral
may be written

ff{x 115611+9[ (AGH‘A l)+“<1{ R )(‘MIZ

—le )]5512+ Ar225€22+]wua"11 +§(,A[|2+AM21>5(K12

+x21) ‘1\'1‘4225"22}&1(12(151(152 (26)

]A(‘I
— ] i
AM12:2(A?\'Y12+AN°21) (27)
— 1
1‘112———'—2»(;’\112—}—]\121) (28)
- 1 y
"12:§(K12+K21) (29)

If the erm M,;;— M, is neglected, the expression
(26) th-n becomes

fr(N b6y 2 Nigde s+ Nogbegy+ M bk, +2M 1285,

. +M,sbks) madt\dEs  (30)
Note that Ny, and N, occur in expression (26)
%(Nxz+2\’21) and that

Ni;— Ny is not being neglected in expression (30).

only in the combination
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The quantity M;;— M, need not necessarily be
neglected in the present derivation because N
could be defined to be the whole coefficient of
28¢;; In expression (26); however, the simplifica-

tion (27) seems to be justified because i(?l{—
2

—%) (M,—M,)) would ordinarily be small com-
1

pared with % (Np+Nay)-

MODIFIED EQUILIBRIUM EQUATIONS

The number of stress quantities aside from @,
and @, has been reduced from eight to six (as in
Love’s first approximation) but the equilibrium
equations (1) to (6) are obviously in need of some
modification. In the usual derivation of the equa-
tions of lLove’s first approximation theory, the
distinction between N,; and N, and between M,
and My is dropped and equation (6) is suppressed.

be written as

5

It is argued that equation (6) is satisfied iden-
tically by exact expressions for the stress result-
ants and couples (in terms of integrals of stress
through the thickness of the shell). However,
the exact expressions are not actually used in
the theory. In the present theory a modified set
of equilibrium equations is derived by another
application of the principle of virtual work start-
ing from an energy expression equivalent to
expression (30).

Since all the strain quantities are expressible
in terms of U}, U, and W, such expressions could
be introduced into equation (30), in which case
an application of the principle of virtual work
would lead to three equilibrium equations. A
slightly different procedure leading to essentially
equivalent results is used instead. It is conven-
ient to reintroduce the quantities @, and @, and
to use ¢, and ¢, as they are rather than to express
them in terms of U, U;, and W. The expression
for the virtual change in strain energy may then

S {0 S S ) s (o S S )
+Npb (a ba[g'l +a aal&' baog(' baz( )+LM”6 o 3‘2’ g‘;‘d,z)
M| o 3?“‘ gq; o o op ot () (o s pa%+g«2 ~oaU >]

Y . — 171 1
:Cﬁ [{ A‘rna("ﬁ+Ar125(~"2+Q15” +-M, 8¢, +M,8 [¢2+§ <F'—7{—) U‘z]} ayl,
J e 2 1

— < Napdll+ Nmalr"rl‘*'Qz‘S uv+i"[225¢2+ﬂ_1125 [‘ﬁl'—‘l <L"‘L) Ul] 0‘1(151]
2\R, R,

ba22\11
Of

?’au’Vu
¢,

__Oay

Oy
N a8,

T,

-JK

0’1“2 Il‘712 o
N22+ Qx+ 2 of, (—RT)

+[ .

a

2 0,

()]
1{2

Jollo+ . JsWH[ . J et - ] 5452}(151(1& (31)

If the portion of the shell within C is in equilibrium, by the principle of virtual work the left-hand
side of expression (31) must equal the line integral on the right-hand side, in which case the area

integral on the right must vanish.

Since the virtual displacements may be assumed to be arbitrary
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and independent, the following conditions of
equilibrium must hold:

Da“ 2 O = O, aay
A‘\‘])

bazi 11
of T ok +'as; g VTR,

3 o, [(1:‘1 1{1)‘”"]—” (32)

aagwlg aap?\“?._,g aag T‘Y bal \y ool

2, + Ok +aslr1-.> OF, T, @
), o |:< R M,z]— (33)
T “,I‘;+‘?§z”) w=0 (34
a"‘gg” Qo :12 o M 52 M Q=0
(35)
a"‘gg ”+°“52f‘-’i~’ g—og‘f ‘\71—2? My — e, Q=0

(36)

These equations (egs. (32) to (36)) are the equilib-
rium equations of the proposed new theory.

STRESS-STRAIN RELATIONS

The set of stress-strain relations which is ap-
propriate depends on the mechanical properties
of the material of the shell which are not neces-
sarily elastic. In the important case of an iso-
tropic elastic material, the stress-strain relations
may be taken to be the same as those in Love’s
first approximation, namely:

3 '
Ehew=Nu—vNe b ay=My—sliy
3
Ehfg-_g:j\‘rgz_l’]\‘r” lfg K22—J[oz VA‘[“ }(37)
= ER _
Eh512: (1‘{‘”)*‘\‘12 To Kiz— (1+V) ‘[12

12

where h is the shell thickness, £ is Young’s
modulus, and » is Poisson’s ratio.

N

MODIFIED STRAIN-DISPLACEMENT RELATIONS: it

For convenience, the strain-displacement rela-

tions of the new theory are repeated here.

_ Lol I Oy ,. W h
o 2f Tam ok TR,
1 (»’l 2 1 aa-_) r 1‘Y
€227 a, )E alagaigl[ 1+1\)2;
1 of’, ol’, O« Octa )
20, (“ of T ox, "op 1 Tog
100 1 0 ,.
= ay ()El+a—la2 o0&, ¢ ‘ (38)
106 1 0w,
K22—~a2 0f, oo afl !
- _ 1 O, O¢,  Oay Oa,
oy, | % 08, T g, 08, g,
NYSREAYL 2_9@!}_>
2\ R, R, 0,

It is shown in appendix A that cach of these strain
quantities vanishes for small rigid-body motions.

BOUNDARY CONDITIONS

The soundary integral on the right-hand side
of equetion (31) may be used to determine the
proper ‘orm of boundary conditions to be applied
in the jresent theory. Since the process of deriv-
ing then is well-known, Onlv the results will be
given hoere. :

On a1 edge where § is a constant prescribe:

Y11+R 1, or [/ (39a)

= 3 1\ .
i 12+<m'—‘§‘[?l) ;‘1/[12 or (,"2 (39b)
(Jl+£; 56”22 W (39¢)
M, or g‘; (39d)

On an dge where §; is a constant, the conditions

are the same as those in expressions (39) except

that ths subscripts 1 and 2 are interchanged.
COMPATIBILITY EQUATIONS AND STRESS FUNCTIONS

’l‘he HIX StI‘ain quantities €11, €92, €12, K11, Koo, &nd
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® (eqs. (38)) satisfy identically the following compatibility equations:

Oaprsy  Oaiky Qe Oy 1 (1 Oy

T “”ﬂ:,( or T
Ok Qakyy Oty o Qo o 1 _?},169
df, | 0F OF TR TR\ on T ok

O [1(_Oxey , Omep | Oy ]

agl l:al( aEI + afz +D£1 e“+ +O£z

Ot €y

[Z: ( 0%,

If in equations (40) to (42) €, is replaced by — My,
€ 1s replaced by — A, €2 is replaced by My, k18
replaced by Ny, xp is replaced by Ny, and &, 18
replaced by —Nj;, then these equations become
identical to the modified equilibrium equations
(egs. (32) to (36)) written in the form with @,
and Q, eliminated. Because of this remarkable
circumstance expressions for the stress resultants
and couples which satisfy the homogeneous equi-
librium equations identically can be written down
by inspection by using the strain-displacement
relations (38) and making these replacements.
Three stress functions corresponding to the three
displacements are introduced. Let X; correspond
to — 7, X; correspond to — U, and ¢ correspond to
—W. The following expressions then satisfy the
equilibrium equations identically:

Vel O (Lo my, 1 Qu(lor x
) ”—az o0& \a, Ok, 1"2, aray O \&, a%’l R
(43)
Ve O (108 X, 1 Du(1 X,
. 22_‘11 afl . Of; 1‘)1, gy af; awbﬁ R-
(44)
Vg O (el oy 10 (X 10
M0 D\ R, 08/ T 2, agz R, o, 0%
L Qe 1O 1 day(xa_1 0%
)alaz afz 111 23] af 20!1012 afl 1‘)2 a; 0,

1 aa2X) 9&1X1 ~
+4a1a2 (Rz R 1) a£1 afz (4L)>

1 OX, 1 ba2 ¥
J[”_a2 0  a; aEl J+R (46)
oL o, 1 Oy v ,
A\Igz—al ok, Ollaz bfz Z+Rl (47)

524304 - 60———2

Oty

ok,

Oazers

+

aa, N
VOS e,,+a£ el,>+*) OE /nl /x’ e,)]—() (40)
Oa, O,

‘”*'a'gﬁ 5 o, [(11, /.,)*”]*” 41)

0,

Oazey | O O V1 _ Kipy K\ .
ot Tor T o E”)] "‘"’( +/,l) 0 142
T oo 1 an )
A‘”ud 20, 0f) 2a; O£3+2a1a2 afzx Oflx

(48)

The essence of the new theory is contained in
equations (32) to (48). The particular forms of
these equations which are appropriate to circular
eylindrical shells are presented in appendix B.

CONCLUDING REMARKS

An improved first-approximation theory for
thin shells has been derived.  The strain-displace-
ment relations are more realistic than those of
Love’s first approximation because all strains
vanish for small rigid-body motions of the shell
whereas for Love’s theory they do not.

In previous derivations of a first-approximation
theory the number of unknown stress resultants
and couples are reduced from 10 to 8 by making
approximations in the expressions for the result-
ants in terms of integrals of stress through the
thickness of the shell. In the present derivation
the reduction in number of stress unknowns from
10 to 8 is made by combining some of them in a
way suggested by a certain expression of the
principle of virtual work which includes the work
done during a small rotation about the normal to
the shell. It is not necessary to drop any terms
in the expressions for the stress resultants and
couples in terms of integrals of stress through the
thickness of the shell.

The compatibility equations for the strain
quantities involved in the theory lead directly to
expressions for the stress resultants and couples
in terms of a set of stress functions. These ex-
pressions for the stress quantities satisfy the
equations of equilibrium identically.

LancLEY REsEArRcCH CENTER,

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION,
LancrLey Fienn, Va., February 4, 1859.



APPENDIX A

SMALL RIGID-BODY MOTIONS

Let 7(8,£) be the vector from the origin to a
point on the middle surface of the shell. If ¢,
and & are unit tangent vectors in the % and &
directions, respectively, and m=1% X1, is the unit
normal veetor, 7 can be expressed in the form

;:P1;1+P222+Pn71 (Al)

Equation (A1) defines the quantities p;, py, and p,
as functions of £ and &. The components §,, §,,
and 8, of a constant displacement vector A and the
components w;, w;, and w, of a constant (small)
rotation vector ¢ are defined in the £,&n co-
ordinate system by the equations

K:5|?1+6272+8nﬁ (1&2)
_2=—w2;1—+—w1?g+w,,7l (A:;)

The displacement vector U=U.t,+U,t,+Wn of
points on the middle surface of the shell due to the
rigid-body motions A and © is given by

U=2a+0XF (A4)
or in component form by
{7y =8,4 pnw,— paw,
(f“y2:52+in2+P1wn (A5)
W=68,—pw,— pxos
The rotations are given by
b=uw,
Pr=w, (A6)
Gn=w,
By using the equations
08_08_, 08_dn_)
OEI af_) agl aEQ
(A7)
or_ .z or_ .3
o doF, Xt

o]

together with the well-kknown equations for the
derivatives of £, f,, and 7 with respect to ¢ and &

(see ref. 2)
Ot 10ay; a— Ol 1du;
agl [22] afz 2 1‘)1 af‘z ay afx z
of,_ 1 0my o 105 oy
afl (24 552 ' afz alel ! Rz
on_ ey A _ay
dt, B, dt, It,F

the following formula

s may be derived:

Opi_, _ p:Ox_ap, oy py 0y A
afl ! (241 552 1{1 afz ay afl
Op:_ 10 001, —£10%_awpy |
afl [£5] 052 afz : 23] afx ]‘)2
9pu_py 0P _asp:
OEl [{1 agl 1{2 J
(A8)
% _ 8 0m_wd, 2b_5 du )
of, % 04, 1, 0t o o0&
95, 4 0y 0% _ 8 0m_ ad, L (49,
0f o afz bfz a afl 12
of I o I J
Qi _ w O Owy_w; 0oy apewy
afl ag afz afz a afl “2
Owp_ @i Oy | aywy Oy w1 Oay > (AL0)
afl 293 052 Ity 052 [24] bEl
Owy_ _ ayy Ow, _
O, R, oL R, J

With the use of equations (A8) to (A10) it can
be shown that the strains given by equations (9)

to (18) or by equations (38) vanish when the
rigid-bedy displacements and rotations given by
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equations (A5) and (A6) are imposed. For ex-
ample, consider «;; (given by eq. (15))
_ 103 1 Oa
KIZ_al oE] ajay aEZ ¢1 1{ ¢ (All)
SR PRI P D
KIZ_ ay OE>w1+Rl (£33 OEZ “r ]{l Wn =0

(A12)

The same is true for «,; and hence for k=
1
é(K12+K21)-
theory given by equation (44) of reference 2 as
1 0¢, , 1 09, 1 /O« Oa, )
iy 2 g, A3
T a; 0f 0% o 0%, +O£1 : S )

does not vanish except in the special case of axi-
symmetric loading of shells of revolution.

The corresponding strain r in Love's




APPENDIX B

EQUATIONS OF THE THEORY FOR A CIRCULAR CYLINDER

In the case of a circular eylinder let

(= U=l R=w a,=1
(B1)
£=0 =V Ry=R a,=1
The equilibrium equations are
ON, L ON, 1 9;\_1,9:')
or "R 08 T 2R* o
O\',, 1oN, 1 M,
F T oe e dr +7 Q=0
¢ 1 0@ 1 (B2,
Rog RV ( >
oM, 1M, ,
or TR op &0
OMe , 1 0M,
or TR op =0 )
The strain-displacement equations arce
_ol’ oW h
= or YT
I ol 1 o'W 1 oV .
7 TR R R ERY g (B3)
LV 1Ay L 1 OW 3oV 1A
o 2\or TR 0§/ T " Roros 4R or 4R 00 )
The stress-strain relations are
" 3
x\‘v,:][ifh;, (e;+ves) M, =1*x,~+vkg)
_—
A\“eZT_";g (es+ve,) Moy=L (xa+vx,) p (B4)
wzg:i'libz (l_p)ezﬂ MJ@:L (1—v)kz0
— )

10
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2R3 . . - .
where D= 20— and & is the thickness of the shell.  The compatibility equations are
QK@ 1 bK,g 1 915]70 0 W
or 1208 24 09
am 1 Ok, , 3 Q€ 1 e, -
s Lo NN )| ;
or Tl ont2n o "It op " [ (B5)
a2 D 1O 1,
Roro6” R2og R™
The expressions for the stress resultants in terms of stress functions are
. laz‘p 1 0x, Alﬁg& ¥ h
Ne=p e 1 o0 M=pSetr
AT az‘p A 4 _ax[
Ny= 6:(" My= o > (Bﬁ)
N Loy 3o Lo g 110x 0%
No=—forosTakt or ikt o8 =2\ s m),

Some comparison with other theories of circular

cylinders is afforded by the following means. Lt
M h
U=Uef cos né
g
V="Vek sinng } (B7)
— M
W=WeE cos né
o
where n is the number of the harmonic. Use of

equations (B7), (B3), (B4), and (B2) leads to the
following equation for the determination of A:

b (n2—1 )] M —4n?(n?—1)2\?

N—4n2\8 [1 176

+nin—1)*=0 (BS8)

those shown have bvvn n(-(rlo( tvd mn vquauon (Bb)
The corresponding equations for A for several other
theories of circular cylindrical shells are given by
Naghdi and Berry in reference 6. For instance,
from Love's theory the following equation is ob-
tained:

A8 4n2)\6+|: K +6n'—2(2-4+y u:l)\*—i—l: 4’

.’ “+ 3w
=

&

+2(3+w)n'— n?:l N (ni—1)2=0

and Fliagge's theory yields

2
—2(2n2— )N+ (LKIL+67L4~GN‘~’) N [—4n®

+2(4—y)n* =22 —p) RN 0 (n—1)*=0

Equation (B8) is remarkably free of Poisson’s
ratio terms compared with these equations and the
corresponding equations for other theories,

h’ . .
where K= T Terms of higher order in K than
REFERENCES
1. Love, A. E. H.: A Treatise on the Mathematical Theory

of Elasticity.
pp. 173-174.
2. Reissner, Iiric: A New Derivation of the Equations for
the Deformation of Elastic Shells.  Am. Jour. Math.,
vol. LXIII, no. 1, Jan. 1941, pp. 177-184.
3. Naghdi, P. M.: A Survey of Recent Progress in the
Theory of Elastic Shells. Appl. Mech. Rev., vol. 9,

Fourth ed., Dover Publications, 1944,

no. 9, Sept. 1956, pp. 365-368.

Green, A. K., and Zerna, W.: Theoretical FElasticity.
The Clarendon Press (Oxford), 1954.

Phillips, H. B.: Vector Analysis.  John Wiley & Sons,
Inc., 1933.

Naghdi, P. M., and Berry, J. G.: On the Equations of
Motion of Cylmdrlcal Shells. Jour. Appl. Mech,,
vol. 21, no. 2, June 1954, pp. 160-166.

U.5. GOVERNMENT PRINTING OFFICE: 1960






